Further results on proper and strong set colorings of graphs

نویسندگان

  • S. M. Hegde
  • M. K. Sumana
چکیده

A set coloring α of a graph G is defined as an assignment of distinct subsets of a finite set X of colors to the vertices of G such that all the colors of the edges which are obtained as the symmetric differences of the sets assigned to their end-vertices are distinct. Additionally, if all the sets on the vertices and edges of G form the set of all nonempty subsets of X, then the coloring α is said to be a strong set coloring, and the graph G is called strongly set colorable. If all the nonempty subsets of X are obtained on the edges of G, then α is called a proper set coloring, and such a graph G is called properly set colorable. The set coloring number of a graph G, denoted by σ(G), is the smallest cardinality of a set X such that G has a set coloring with respect to X. This paper discusses the set coloring number of certain classes of graphs and the construction of strongly set colorable caterpillars which are also properly set colorable. An upper bound for b is found for K3,b to admit set coloring with set coloring number n. 56 S.M. HEGDE AND M.K. SUMANA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Strong parity vertex coloring of plane graphs

Czap and Jendrol’ introduced the notions of strong parity vertex coloring and the corresponding strong parity chromatic number χs. They conjectured that there is a constant bound K on χs for the class of 2-connected plane graphs. We prove that the conjecture is true with K = 97, even with an added restriction to proper colorings. Next, we provide simple examples showing that the sharp bound is ...

متن کامل

On Fall Colorings of Graphs

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex of G sees all k colors on its closed neighborhood. We denote Fall(G) the set of all positive integers k for which G has a fall k-coloring. In this paper, we study fall colorings of lexicographic product of graphs and categorical product of graphs and answer a question of [3] about fall colorings of categorical prod...

متن کامل

r-Strong edge colorings of graphs

If c : E → {1, 2, . . . , k} is a proper edge coloring of a graph G = (V,E) then the palette S(v) of a vertex v ∈ V is the set of colors of the incident edges: S(v) = {c(e) : e = vw ∈ E}. An edge coloring c distinguishes vertices u and v if S(u) 6= S(v). A d-strong edge coloring of G is a proper edge coloring that distinguishes all pairs of vertices u and v with distance d(u, v) ≤ d. The minimu...

متن کامل

Spatial Mixing of Coloring Random Graphs

We study the strong spatial mixing (decay of correlation) property of proper q-colorings of random graphG(n, d/n) with a fixed d. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n, d/n), an easy counterexample shows that colorings do not exh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2012